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A Table of Elliptic Integrals: Cubic Cases* 

By B. C. Carlson 

Abstract. Forty-one integrands that are rational except for the square root of a cubic 
polynomial with known real zeros are integrated in terms of R-functions for which For- 
tran codes are available. In contrast to conventional tables the interval of integration is 
not required to begin or end at a singular point of the integrand. The table contains one 
elliptic integral of the first kind, 26 of the second kind, and 14 of the third kind. Only 
10 of the integrals are treated in standard tables, which list a large number of special 
cases that are unified here. 

1. Introduction. Two earlier installments [2], [3] of a new table of elliptic 
integrals deal primarily with "quartic cases" in which the integrand is rational 
except for the square root of a quartic polynomial with known real zeros. In this 
paper we consider "cubic cases" of the form 

x 4 

(1.1) [p] = [Pl, ,P4] (ai + bit)P'/2 dt, 

where P1, P2, P3 are odd integers, P4 is an even integer (omitted if it is zero), 
and all quantities are real. Integrands containing complex conjugate factors will 
be considered in a later paper. Although a cubic case can usually be calculated 
numerically by choosing ai = 1 and bi = 0 for some value of i in a suitable quartic 
case, it is preferable to have an explicit formula, which is often tedious to obtain in 
a uniform notation from the quartic case. 

The integral (1.1) is an elliptic integral of the third kind if P4 is even and negative. 
Otherwise, it is second kind except for [-1, -1, -1], which is first kind. Many 
integrals like 

f(acos2 0 +/ ,sin2 O)yi/2 dO and f(a +/ z2)Pi/2( + 6Z2)P2/2 dz 

can be put in the form (1.1) by letting t = sin2 0 or t = z2. 

The integrals in the table are expressed in terms of four R-functions: 

(1.2) RF(X,Y, z) = ~ f[(t + X)(t + y)(t + z)]/2 dt 

(1.3) Rj(x, z, ) = | [(t + X)(t + y)(t + z)]-1/2(t + w)-1 dt, 
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and two special cases, 

(1.4) Rc(x,y) = RF(X,y, y) and RD(X, Y,Z) = RJ(x, y, z, z). 
The functions RF and RJ are symmetric in x, y, z; RF and RC are homogeneous 
of degree -1/2; RJ and RD are homogeneous of degree -3/2; each of the four 
functions has the value unity when all its arguments are unity; and RC and RJ are 
interpreted as Cauchy principal values when the last argument is negative. Fortran 
codes for numerical computation of all four functions, including Cauchy principal 
values, are listed in the Supplements to [2] and [3]. The functions RF, RD, and Rj 
respectively replace Legendre's integrals of the first, second, and third kinds, while 
Rc includes the inverse circular and inverse hyperbolic functions. 

To select integrals that are relatively simple, we arbitrarily require Z IPp I < 7 
and Epi < 3. Apart from permutation of subscripts in (1.1), there are just 40 
cases of this kind. The table in Section 2 contains all 40 as well as [-3, -3, -3], 
while only 10 of the 41 are included in [4] and nine in [5]. Each of the formulas for 
[1, -1, -1], [1, 1, -1], [-1, -1, -3], and [-1, -1, -5] unifies 18 formulas in [4], and 
that for [1, -1, -3] unifies 36. Moreover, the table in Section 2 does not require the 
interval of integration to begin or end at a singular point of the integrand. 

Derivation of the formulas is discussed in Section 3. All integral formulas have 
been checked by numerical integration, and some details of the checks are given in 
Section 4. 

2. Table of Cubic Cases. We assume x > y and ai + bit > 0, y < t < x, for 
i = 1, 2,3. Assumptions about a4 + b4t will be stated where necessary. We define 

d2, a2 aj3 (2.1) dij= aib - ajbi, rij = -= - 

(2.2) Xi= (ai + bix)'/2, Yi = (ai + biy)1/2; 
(2.3) Ui = (XiY,YYk + YiX,Xk)/(X -Y), 

where i, j, k is any permutation of 1, 2, 3; 

(2.4) W22 = U12 - b4dl2dl3/dl4; 
(2.5) = (X4Y4W2/X1Y1)2, P2 = Q2 + b4d24d34/d14; 

(2.6) A(pi X X Pn) = X1 l XnP 1 YP 

These definitions imply, if P2 is chosen positive, 

(2.7) P2 = (XT1X2X3Y4 + Y17'Y2Y3X4)/(x- 
(2.8) U2= U-b3d2, U3 = U = U22- d23 

(2.9) W22 = U22 + b1dl2d34/dl4 = U32 + b1dl3d24/dl4. 

If one limit of integration is infinite, (2.3) simplifies to 

(2.10) ~~U2 = (bjbk)1/2Y_ 
X = +00, 

(2.10) Ui = (bjbk)1/2X2, y = -00, 

where the square roots are nonnegative, while 

Q2= (b4/b)(Y4W2/y1)2, x = +oo, (2.11) 2= (b4/biA(XE 1W/)2 y = -00. 
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Cubic cases will be expressed in terms of the quantities 

(2.12) Ic= 2RF(U,Ui2 1), 

(2.13) I2C = 2dl2dl3RD(U2, U2, U12) + 2XiYi/Ui, 

(2.14) I3c - 2bd12d13 RJ(U3, U2, U1 W2) + 2RC(P2, Q2), 

which are integrals of the first, second, and third kinds, respectively. It will be seen 
from the tables that 

(2.15) IC= [-1,-1,-1], I2c = [1,-1,-1], I3c = [1,-1,-1,-2]. 

Thus I3c reduces to I2c if a4 = 1 and b4 = 0. The extra subscript c stands for 
"cubic," and the quantities defined here are obtained from those used in [3] for 
quartic cases. Specifically, if we put a4 = 1 and b4 = 0 and subsequently replace 
the subscript 5 by 4, then (U12,U13,U14) reduces to (U3,U2,U1), (W,P,Q) to 
(W2,P2,Q2), and (I1,I2,I3,I3) to (Ilc12CJ23C,I2C). 

It is convenient to define also the quantities 

(2.16) Jlc = d12d13I1C - 2b1A(1, 1, 1) 
= 2d12d13RF(U32, U22, U12) - 2b1A(1, 1,1), 

J2C = b2I2c -2A(1j 1, -1) 

(2.17) =2 d l 2d13RD (U32 U22 U12) + 2d13X2Y2 

The first of these appears in the formula for [1, 1, -1] and is transmitted by recur- 
rence relations to a dozen others; likewise, J2C is transmitted from [1, -1, -3]. The 
second line of (2.17) follows from the first with the help of the identity 

2.18) 
(x - y)UjX3Y3A(l, 1, -1) = X2Y2(X1Y3 - X3Y?) + X1X3Y1Y3(X2 - Y22) 

= (x - y)(d31X2Y2 + b2X1X3YlY3). 

It is important to use Ilc and J2C, not J1C or I2c, to evaluate integrals with Pi < 
-2, which converge when x = +oo or y = -oo. Both J1C and I2c then become 
infinite while Ilc and J2C are finite. The second term in the second line of (2.17) 
becomes 

(2.19) 2dl3X2Y2/X3Y3Ul = 2d13Y2/b3Y1Y3, x = +xo, 
2dl3X2Y2/X3Y3Ul = -2d13X2/b3X1X3, y = -x0. 

If one limit of integration is a branch point of the integrand, then Xi or Yi is 0 
for some value of i < 3, and one of the two terms on the right-hand side of (2.3) 
vanishes. If X1 Y1 = 0 then P2 and Q2 are infinite, and the RC function in (2.14) 

vanishes by homogeneity. If both limits of integration are branch points, the elliptic 
integral is called complete, and U1 U2U3 = 0. It is not assumed that bi # 0 nor 
that dij : 0 unless one of these quantities occurs in a denominator. The relation 

dij = 0 is equivalent to proportionality of at + bit and a1 + bjt. 
We shall now list 41 cases of 

(2.20) [Pl,. ,Np] = j(a, + bt)PI/2 ... (a4 + b4t)P4/2 dt, 
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18 with p4 = 0, nine with p4 = 2 or 4, and 14 with p4 = -2 or -4. Only the last 
14 are integrals of the third kind involving I3c. We omit p4 = 0 in the first 18: 

(2.21) [-1, -1, -1] = Ilc 

(2.22) [1, -1, -1] = I2c 

(2.23) [1, 1, -1] = [(b1d23 + b2dl3)I2c - Jlc]/3bib3. 

(2.24) [1, 1,1] = [-2b1b2b3(r12r13 + r223)I2c + (r12 + r13)Jlc + 6A(3, 1, 1)]/15b1. 

(2.25) [1, -1, -3] = (J2c -d2Ilc)/d 

(2.26) [-1, -1, -3] = (b3J2c -b2d3Ilc)/dl3d23 

(2.27) [1, 1, -3] = [2b2I2c - d12I1c- 2A(1, 1, -1)]/b3. 

(2.28) [3, -1, -1] = [2(b2d13 + b3dl2)I2c - Jlc]/3b2b3. 

(2.29) [3,1 -1] = [bib2 b3(3r13 + 7r13r23 -2r23)I2C 

-(3r13 + r23)Jlc + 6A(3, 1,1)]/15b3. 

(2.30) [3, -1, -3] = [(b1d23 + b2d13)I2c -d2dl3Ilc- 2d13A(1, 1, -1)]/b3d23. 

(2.31) [3,1, -3] = [(b1d23 + 7b2dl3)I2c -4dl2dl3Ilc 

+2bjA(1, 1,1) - 6d13A(1, 1, -1)]/3b 
2 

(2.32) [1, -3, -3] = [2b3J2c - (b2d13 + b3dl2)Iic + 2d23A(1, -1, -1)]/d23. 

(2.33) [-1, -3, -3] = [b3(b2d13 + b3dl2)J2c - 2b2b3dl2dl3Ilc 

+2b2dl3d23A(l, -1, -1)]/dl2dl3d223 

[-3, -3, -3] 
- (b3/dl2dl3d23){(2/rl2rl3r23)(rl2rl3 + r223)J2C 

(2.34) -(bib2/r23)(rl2 + rl3)Ilc 

+(2/r12)[bir23A(-1, 1, -1) + b2r13A(l, -1, -1)]}. 

(2.35) [1, -1, -5] = [-b2(1 + rl2/rl3)J2c + 2b2d12I1c - 2d23A(1, 1, -3)]/3d23. 

(2.36) [1, 1, -5] = [(r73' + r-')J2c - dl2r-'Ilc - 2b3A(1, 1, -3)1/3b . 

237) [-1, -1, -5] = [-2(r73' + r-')J2c + b1b2(1 + 2rl3/r23)Ilc 
-2b3A(1, 1, -3)]/3d13d23. 

(2.38) [5-1,-1] = [b1b2b3(8rl2 + 8r13 + 7rl2rl3)I2c 

-4b1 (r12 + rl3)Jlc + 6b,A(3, 1, 1)]/15b2b3. 

The next nine integrals have p4 = 2 or 4. No restriction is placed on a4 or b4. 

(2.39) [-1, -1, -1, 2] = (b4I2c -dl4Ilc)bl. 

(2.40) [1, -1, -1, 2] = (b4/3)[(r13 - r34- 2r24)I2c - Jlc/blb2b3]. 

(2.41) [1, 1,-1,2] = (b4/15bib3){-bib2b3[rl2 + r13 + r23 + 5r34(r13 + r23)]I2c 

+(r12 + r14 + 4r34)Jlc + 6A(3, 1, 1)}. 

(2.42) [-1, -1, -3, 2] = (-d34J2c + dl3d24Ilc)/dl3d23. 
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(2.43) [1, -1, -3, 2] = [(b4d23 - b2d34)I2c + dl2d34Ilc + 2d34A(l, 1, -1)]/b3d23. 

(2.44) [1, 1, -3, 2] = (b4/3b3)[b2(r13 + r23 - 6r34)I2c + d12(3r34 -rl3)Ilc 

+(2/b3)A(1, 1,1) + 6r34A(l, 1, -1)]. 
[3, -1, -1, 2] = (b4/15b2b3){bib2b3[8r22 + 8r23 + 7r12r13 

(2.45) -10r14(r12 + r13)]I2C 

-(4rl2 + 4r13 - 5rl4)Jlc + 6A(3, 1, 1)}. 

(2.46) [-1,-1,-1, 4] = (bM/3b,)[-2(rl4 + r24 + r34)I2c 
+3br 24Ic - Jic/bjb2b3]. 

(2.47) [1, -1, -1, 4] = (bM/15bib2b3){b1b2b3(8r23 + 3r12r13 - 5rl4 + 2Or24r34)I2c 

+2(rl4 + 2r24 + 2r34)Jlc + 6A(3, 1, 1)}. 

The final 14 integrals have p4 = -2 or -4 and are integrals of the third kind. 
We assume either that a4 + b4t is positive on the closed interval of integration or 
else, if p4 = -2, that it changes sign in the open interval of integration. In the 
latter case the integral is interpreted as a Cauchy principal value (see [3, Section 
6]). 

(2.48) [1, -1, -1, -2] = I3c. 

(2.49) [-1, -1, -1, -2] = (b4I3c -bIlc)ldl4- 

(2.50) [1, 1, -1, -2] = (d24I3c + b2I2c)/b4. 

(2.51) [1, 1, 1, -2] = [3b2r24d34I3c + b2b3(rl4 + r24 + r34)I2c - Jlc/bl]/3b4. 

(2.52) [1, 1, -3, -2] = (d24I3c - J2c + dl2I,c)/d34. 

(2.53) [1, -1, -3, -2] = (b4d23I3c - b3J2c + b3d12Ijc)/d23d34. 

(2.54) [-1, -1, -3, -2] = [(b2/dl4)I3c - (b2/dl3d23)J2c + (r-1 -r-')Ilc]/d34- 

(2.55) [3, -1, -1, -2] = (dl4I3c + blI2C)/b4. 

(2.56) [3,1, -1, -2] = bib2r14r24I3c + (bib2/3b4)(2r13 + 2r14 + r24)I2c 

-Jlc/3b3b4. 

[3, 11, -2] =(d4d24d34/b3)I3C 

(2.57) +{bib2b3[5r14(r14 + r24 + r34) - r2 - r3 - r3]I2 

-(3rl4 + r24 + r34)Jlc + 6A(3, 1, 1)}/15b4. 

(2.58) [1, 1, 1, -4] = [b2b3(r24 + r34 + r24r34/rl4)I3c + (3b2b3/b4)I2c 

-(dl2dl3/dl4)Ilc - 2A(1, 1, 1, -2)]/2b4. 

In the next three formulas we use the abbreviation 

(2.59) K2C = b2b3I2c - 2b4A(1, 1, 1, -2) = b3J2c - 2d34A(l, 1, -1, -2). 
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The second equality, showing that K2, is finite if x = +oo or y = -ox, follows from 

(2.17) and [3, (4.8)]. 

(2.60) [1,1, -1, -4] = [bib2b3b4(r 4 - rl3r23)I3. + bjr14K2. 
- d12d13I1c1/2d14d34. 

(2.61) [1, -1,-1, -4] = (1/2b4)(rj1i - r -r34)hc 

+ [K2c - (b4d12d13/d14)I1c]/2d24d34. 

[-1,-1, -1, -4] = -(1/2d14)(rj-1 + r-1 + r_1)I3c 

(2.62) + (b4/2d14d24d34)K2c 

+ (b1/d14)2(1 - rl2rl3/2r24r34)I1c. 

3. Derivation of the Formulas. Six of the 41 formulas are obtained by 
putting a4 = 1 and b4 = 0 (see the remarks following (2.15)) in suitable quar- 
tic cases in [3]. Thus [-1, -1, -1], [1, -1, -1], [1, 1, -1], [1, -1, -3], [-1, -1, -3], 
and [1, 1, -3] come respectively from [-1, -1, -1, -1], [1, -1,-1, -3], [1,1,-1,-5], 
[1, -1, -3, -3], [-1, -1, -3,-3], and [1, 1, -3, -3]. Seven more are obtained by 
putting a4 = 1 and b4 = 0 and then replacing a5 by a4 and b5 by b4. Thus 

[-1, -1, -1, 2], [1, -1, -1, -2], [3, -1, -1, -2], [1,1,1, -4], [1,1, -1, -4], [1, -1, 
-1, -4], and [-1, -1, -1, -4] come respectively from [-1, -1, -1, -1,2], [1, -1, 
-1, -1, -2], [3, -1, -1, -1, -2], [1,1,1, -1, -4], [1,111-1, -1,-4], [1, -', -', 
-1, -4], and [-1, -1, -1, -1, -4]. The formulas are often simplified by using iden- 
tities such as [3, (4.6) to (4.9)]. 

The remaining cases are then obtained by recurrence relations. Let ei denote 
an n-tuple with 1 in the ith place and 0's elsewhere (for example, [p + 2e1] 

[Pi + 2,iN ... PO]). From [4, Section 4] we have 

(Ai) (P1 + + Pn + 2)bi[p] = pjdji[p- 2ej] + 2A(p + 2e), 
jsi 

(Bij) dij[p] = bj[p + 2ei] - bi[p + 2ej], 

(Cij) bj[p] = bi[p - 2ei + 2ej] + dij[p - 2eJ]. 

To get [1, 1,1] we use (Al) and evaluate [1, -1,1] by interchanging the subscripts 2 
and 3 in [1, 1, -1]. Equations (2.28) to (2.31) then follow in order from (C12), (C13), 
(C13), and (C13). To get [?1, -3,-3] we use (B23) and evaluate [+1, -3, -1] by 
interchanging the subscripts 2 and 3 in [+1,-1,-3]. Then [-3,-3,-3] follows 
from putting [p] = [-1, -3, -3] and i = 1 in [2, (5.5)] and using [3, (4.8)]. After 
[1, -1, -5] has been obtained from (A2) with [p] = [1, -1, -3], Eqs. (2.36) and 
(2.37) follow respectively from (C23) and (B13). Equation (2.38) comes from (C12). 

Equations (2.40) to (2.47) follow in order from (C42), (C43), (C43), (C43), (C43), 
(C42), (C41), and (C42). To get (2.49), (2.50), and (2.51), we use (B14), (C24), 
and (C34), respectively. Equations (2.52), (2.53), (2.54), (2.56), and (2.57) follow 
in order from (B34), (B34), (B34), (C24), and (C14). 

4. Numerical Checks. The 41 formulas in Section 2 were checked numerically 
when x = 2.0, y = 0.5, ai = 0.1 + 0.2i, bi = 0.5-0.2i, 1 < i < 4. In each formula 
the integral on the left side, defined by (2.20), was integrated numerically by the 
SLATEC code QNG. On the right-hand side, I,, I2C, and I3C were calculated from 
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(2.12) to (2.14) by using the codes for R-functions in the Supplements to [2] and 
[3]. The remaining calculations, including those of J1C, J2C, and K2, by (2.16), 
(2.17), and (2.59), were done with a hand calculator. For each of the 41 formulas 
the values obtained for the two sides agreed to better than one part in a million. 

Some of the intermediate values in these calculations are listed here: 

U12 = 0.41309998, W22= 0.38909998, 
U22 = 0.40109998, P22= 0.24016665, 
U32 = 0.43709998, Q2= 0.21616665, 

Rc (P22, Q2) = 2.1128946, Ic= 3.0973715, 
RF (U32, U22 U12) = 1. 5486858, I2C = 2.0520132, 
RD(U32, U22 U12) = 3.7353179, I3C = 4.2877248, 
Rj(U32,IU22, U12, W22) = 3.8709720, JlC = -0.00688951, 

J2C = -0.80566308, 

A(1, 1,1) = 0.16015635, K2C= 0.78110328, 
A(1, 1, -1) = 0.50543220, 
A(1, -1, -1) = 0.48163106, A(3,1,1) = 0.32463223, 
A(-1, 1, -1) = -0.12403646, A(1, 1,1, -2) = 1.3360390, 
A(1,1, -3) = 1.2956636, A(1,1, -1, -2) = 2.9189040. 
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